PRESSURE in GASES

- Consider a balloon, or a car tyre. The more air you blow into it, the higher the pressure in it becomes.
- This is because you are forcing more and more particles into the balloon (or tyre), and are squashing that air into the spaces around themselves.
- They still have the same amount of energy as before, but have less space to move in, and so are putting more pressure on each other by being squeezed in.
- These particles also hit against the sides of the balloon, and so put pressure on its walls.
- Now if you heat the air, the particles move even faster, and so you increase that pressure even more.

QUESTIONS Pages 85-86

Question 1

1. Mass of matter in a certain volume.
2. Kind of matter (MASS), and spaces (energy) between them (= VOLUME).[2]
Question 2
3. $\mathrm{D}=\frac{\mathrm{M}}{\mathrm{V}}=\frac{100}{50}$

$$
\begin{equation*}
=2 \mathrm{~g} / \mathrm{cm}^{3} \tag{4}
\end{equation*}
$$

2. $D=\frac{M}{V}=\frac{40,5}{15}=2,7 \mathrm{~g} / \mathrm{cm}^{3} \quad[4]$
3. $D=\frac{M}{V}=\frac{13}{8}$
4. $\mathrm{D}=\frac{\mathrm{M}}{\mathrm{V}}=\frac{44}{50}$
$=0,88 \mathrm{~g} / \mathrm{cm}^{3}[4]$

Question 3

1. Aluminium. Lead. Gold. Iron.
[4]
2. Liquids that do not mix. Oil and water - oil is less dense, so floats on water.
[4]

Question 4

1. Railway lines expand in the warmer summer, so gaps are needed between them to stop them from bending out of shape.
2. With energy. Gas particles bump into the side of the container, and this causes pressure.
